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Attribution editing has achieved remarkable progress in recent years owing to the encoder–decoder
structure and generative adversarial network (GAN). However, it remains challenging to generate high-
quality images with accurate attribute transformation. Attacking these problems, the work proposes
a novel selective attribute editing model based on classification adversarial network (referred to as
ClsGAN) that shows good balance between attribute transfer accuracy and photo-realistic images.
Considering that the editing images are prone to be affected by original attribute due to skip-
connection in encoder–decoder structure, an upper convolution residual network (referred to as
Tr-resnet) is presented to selectively extract information from the source image and target label.
In addition, to further improve the transfer accuracy of generated images, an attribute adversarial
classifier (referred to as Atta-cls) is introduced to guide the generator from the perspective of attribute
through learning the defects of attribute transfer images. Experimental results on CelebA demonstrate
that our ClsGAN performs favorably against state-of-the-art approaches in image quality and transfer
accuracy. Moreover, ablation studies are also designed to verify the great performance of Tr-resnet
and Atta-cls.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Attribute editing (also termed as attribute transfer) aims to
hange one or more attributes of images (e.g., hair color, sex,
tyle, etc.) while other attributes remain. The key of attribute
diting is to achieve high quality and accurate attribute trans-
er of generated images. In recent years, generative adversarial
etwork (GAN) (Goodfellow et al., 2014) has greatly advanced
he development of attribute editing. Inspired by this, numerous
pproaches (Choi et al., 2018; He et al., 2017; Li et al., 2019,
016; Liu et al., 2019; Xie et al., 2019; Zhou et al., 2017) have
een proposed to change local (e.g., hair color, adding accessories,
ltering facial expressions, etc.) or global (e.g., gender, age, style,
tc.) attributes of images.
In addition, in order to obtain accurate attribute transfer

mages, encoder–decoder architectures Hinton and Zemel (1994a)
ave been used in attribute editing. Despite promising perfor-
ance, the method may result in poor quality of generated

mage because of the bottleneck layer. To address the issue, skip-
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connection is applied to encoder–decoder architecture for high-
quality image (He et al., 2017; Liu et al., 2019). Nevertheless,
the use of skip-connection brings about the trade-off between
image quality and accuracy (Liu et al., 2019), i.e., it generates
high-quality images at the cost of low attribute accuracy.

Through an in-depth empirical investigation of GAN model
(Goodfellow et al., 2014), in addition to the original image, the
generated image is also required to be fed to the discriminator
for learning the defects of generated images during the training
of discriminator. This way, the discriminator is able to guide the
optimization of generator according to the defect information.
Besides, for attribute classifier in attribute editing, most recent
approaches (Choi et al., 2018; He et al., 2017; Li et al., 2019; Liu
et al., 2019; Xie et al., 2019) only take as input the original images.
Nevertheless, these methods ignore the positive role of generated
images on enforcing attribute transfer accuracy when training the
classifier.

In order to address the aforementioned issues, a novel selec-
tive attribute editing model based on classification adversarial
network (referred to ClsGAN for short) is proposed. The key in-
novation of ClsGAN is an attribute adversarial classifier (referred
to Atta-cls for short) that aims at enhancing the classification
performance. Sharing similar spirit of GAN model (Goodfellow
et al., 2014), Atta-cls is implemented as an adversarial network of
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Fig. 1. Illustration of generated images with the proposed ClsGAN. These generated images demonstrate high quality and accurate attribute transfer from the visual
erspective. Best viewed in color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
mage attributes. During the training of Atta-cls, both the original
nd generated images are fed to the classifier in which it speci-
ies that the attributes of generated image are indistinguishable
similar to the fake property in GAN).

In addition, a detailed empirical analysis on limitation of skip-
onnect in deep encoder–decoder structure (Hinton & Zemel,
994a) is conducted, and the main reason is caused by transmit-
ing both source attribute and details of images into the decoder.
ince more information of source images is encoded, it may
ecrease the target attribute information, resulting in degraded
erformance. Motivated by the residual neural network (Xie et al.,
017), an effective upper convolution residual network (referred
o Tr-resnet for short) which is as a decoder is proposed to
et more the target attribute information. Tr-resnet is able to
electively acquire source image and target label information
y combining both input and output of the upper convolution
esidual blocks, leading to high-quality image generation with
ccurate attribute editing.
Moreover, drawing on the practices of Radford et al. (2016)

nd Xie et al. (2019), ClsGAN takes the images as input into
wo separate encoders (attribute encoder and content encoder)
o decouple entanglement between the attribute and unchanged
ontent information. To keep labels continuous, encoded attribute
nformation (i.e., the output of attribute encoder) is also em-
loyed to approximate to reference labels. As shown in Fig. 1, the
roposed ClsGAN generates photo-realistic images with accurate
ransfer attributes visually.

In summary, the contributions of this work are three-fold:

• A novel ClsGAN is proposed, which demonstrates signifi-
cant improvement in realistic image generation with accu-
rate attribute transfer. In particular, the method presents
a simple, yet effective upper convolution residual network
(Tr-resnet) to alleviate the limitation of skip-connection in
encoder–decoder structure.

• In order to improve attribute transfer accuracy, an attribute
adversarial classifier (Atta-cls) is developed to guide the
generator by learning defects of attribute transfer images.

• Extensive quantitative and qualitative experimental results
in face attribute editing demonstrate that the proposed
ClsGAN outperforms other state-of-the-art approaches. Fur-
thermore, it is also directly applicable for style manipula-
tion.

The rest of this paper is organized as follows: Section 2 dis-
usses the related work of this paper. Section 3 illustrates the pro-
osed approach in detail. Experimental results are demonstrated
n Section 4, followed by the conclusion in Section 5.

. Related works

Generative adversarial networks (GANs) (Goodfellow et al.,
014), a special case of Artificial Curiosity (Schmidhuber, 2020),
221
are defined as a minimax game with a generator and a discrimi-
nator in which the generator generates images as photo-realistic
as possible and the discriminator tries to distinguish the syn-
thetic images from the original images. Since then, various GANs
and GAN-like variants are proposed to enforce the quality of
image or stability of training, including designing novel genera-
tor/discriminator architectures (Karras et al., 2019a; Larsen et al.,
2016; Radford et al., 2016), the choice of loss functions (Nowozin
et al., 2016), the study of regularization techniques (Arjovsky
et al., 2017; Gulrajani et al., 2017; Miyato et al., 2018). What
is more, Hinton and Zemel (1994b) and Kingma and Welling
(2013) introduce an encoder–decoder structure to obtain images’
higher-level semantic information and render reconstructed im-
ages. VAE/GAN (Larsen et al., 2016) combines VAE (Kingma &
Welling, 2013) with GAN (Goodfellow et al., 2014) to modify la-
tent expressions of images by reconstructing loss and adversarial
loss. Progressive GAN (Karras et al., 2018) and StyleGAN (Karras
et al., 2019b) adopt progressive growth method through layer-
by-layer to achieve both style transfer and high-resolution im-
ages generation. GANs have been applied to various fields of
the computer vision, e.g., image generation (Brock et al., 2018;
Goodfellow et al., 2014; Radford et al., 2016), image transfer (Isola
et al., 2017; Zhu et al., 2017), super-resolution image (Ledig et al.,
2017), image deblurring (Kupyn et al., 2018).

Meanwhile, CGAN (Mirza & Osindero, 2014) takes the refer-
ence label as inputs of generator and discriminator to produce
specific images that are consistent with the label. Inspired by
CGAN, the community makes a large number of contributions in
style transfer (Isola et al., 2017; Zhu et al., 2017) and attribute
editing (Li et al., 2016; Zhou et al., 2017). About style transfer,
Pix2pix (Isola et al., 2017) and CycleGAN (Zhu et al., 2017) realize
mutual transformation between two domains about paired and
unpaired data respectively. There are also some double domains’
transformation models (Li et al., 2016; Zhou et al., 2017) in
attributing editing. However, the number of models increases
exponentially with the increase of domains by double domains’
transformation method, which is not universal and leads to model
overfitting and poor generalization ability.

To address the issue, recent methods mostly employed a clas-
sifier to realize attribute classification and transformation. Star-
GAN (Choi et al., 2018) takes domain classification restriction to
control the attribute transformation of images, along with recon-
struction loss, adversarial loss and classification loss. Notably, He
et al. (2017), Liu et al. (2019) and Ronneberger et al. (2015) apply
the skip-connection or its variants with the encoder–decoder
structure to render photo-realistic images. To avoid the effects of
irrelevant attributes, on the one hand, STGAN (Liu et al., 2019)
and RelGAN (Wu et al., 2019) both take difference attribute
labels as the input. On the other, AME-GAN (Xie et al., 2019)
and AGUIT (Li et al., 2019) both separate the input images into
image attribute part and image background part on manifolds to
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void entanglement. StyleGAN (Karras et al., 2019b) introduces a
rogressive growth method and achieves excellent performance.
owever, this approach is inefficient due to heavy computation
urden. In addition, this paper mainly focuses on learning the
tyles from the other image that is different from the goal of our
aper. Considering these reasons, we do not include it for com-
arison. In this work, we present ClsGAN which applies Tr-resnet
nd attribute adversarial classifier to improve image quality and
ttribute transfer accuracy.

. The proposed method

In this section, ClsGAN for arbitrary attribute editing is
escribed in detail. Section 3.1 introduces the proposed upper
onvolution residual network (Tr-resnet). Section 3.2 illustrates
ttribute continuity processing. After that, an attribute adversarial
lassifier (Att-cls) is employed to enhance attribute transforma-
ion accuracy in Section 3.3. The overall network structure and
oss function of our ClsGAN are presented in Sections 3.4 and 3.5.

.1. Upper convolution residual network (Tr-resnet)

The skip-connection (He et al., 2017) has been proven to be
eneficial to improve the quality of generated image. However,
his improvement is obtained at the sacrifice of attribute classifi-
ation performance. In order to solve this problem, the work of He
t al. (2017) introduces selective transfer units as a novel skip-
onnection structure(referred to as STU in short). Nevertheless,
he STU requires more parameters and computation resource,
hich severely limits the application.
In this paper, by empirically investigating skip-connection,

he reason causing limitation is that the incorporation of source
ttribute information weakens the target attribute information
n decoder. Motivated by the residual structure in Liu et al.
2019), the upper convolution residual network (Tr-resnet) is
roposed. Through using Tr-resnet block as a basic unit, a simple
et effective decoder is developed. As shown on the top right of
ig. 2, each Tr-resnet block takes the combination of the layer’s
nput and output as the unit’s output. Furthermore, to effectively
ake use of resource image and target attribute information,
r-resnet applies the weighting strategy to resource image in-
ormation from encoder, input and output information of each
r-resnet block in a special unit. Mathematically, the Tr-resnet
s represented as follows:
∗

l−1 = Transpose(yl−1) (1)

l =

{
α · y∗

l−1 + (1 − α) · yl (l ∈ {1, 2, 4, 5, 6})
α · y∗

l−1 + (1 − α) · yl + β · x2 (l = 3)
(2)

where yl denotes the Tr-resnet feature of the lth layer, Transpose
(·) represents transposed convolution operation that matches the
size between input yl−1 and output yl. x2 denotes the encoder fea-
ture of the 2nd layer, fl denotes the output of lth Tr-resnet block.
n Eq. (2), when l = 3, the Tr-resnet block takes the weighted sum
f the 2nd layer feature map information of the encoder, the 3rd
ayer input and output information of Tr-resnet as output. When
̸= 3, the output of Tr-resnet block is only the incorporation of
nformation about the input and output of lth layer. The model
nitializes α = (a1, a2, . . . , as), β = (b1, b2, ..bs), where ai, bi ∼

niform(0, 1) and s is the number of feature map in yl or x2.

.2. Attribute continuity processing

The approaches in Choi et al. (2018) and Liu et al. (2019) are
ble to generate dual-domain (0 or 1) transfer images. However,
he methods are difficult to render various images with the same

ttribute, and attribute continuity cannot be guaranteed. To solve s
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this issue, the work of He et al. (2017) employs a style controller
to realize multi-modal transformation for a specific attribute
on the basis of the source model, achieving good performance.
Motivated by this, the same is utilized to control the attribute
continuity in this work. In specific, the attribute value is obtained
by approximating encoded attribute label to the reference at-
tribute label. In detail, the optimization object is formulated as
follows:

La = ∥lr − Ea(xr )∥1 (3)

here xr and lr denote source image and reference label, re-
pectively. Ea represents attribute encoder in generator, which
s a general convolution neural network and takes Convolution-
nstanceNorm-ReLU as a unit. The output of Ea has same size with
eference label lr . ∥ · ∥l denotes l1 loss.

.3. Attribute adversarial classifier (Atta-cls)

For attribute classifier, most existing approaches (Choi et al.,
018; He et al., 2017; Liu et al., 2019) only take the source image
s input and then exploit the optimized classifier to improve the
enerator. However, it is difficult for these approaches to discover
he attribute difference between the generated images and source
mages. Inspired by the GAN model (Goodfellow et al., 2014) that
ptimizes the generator according to the deficiency of generated
mage learned from the discriminator, an attribute adversarial
lassifier (Atta-cls) is proposed based on the adversarial method.
In our model, the attribute classifier is designed as an ad-

ersarial network. The source image and the generated image
re both fed to optimize the classifier, and then the generator is
rained according to the attribute defects of generated image.

Specifically, the target of classifier first evaluates all attribute’s
istinguishability (similar to the fake/real nature in GAN), and
hen focuses on the single attributes. When the input is source
mages, ideally the category is distinguishable (the value is de-
ined as 1 or true) and at the same time the single attribute
alue should be consistent with label. So the classifier needs
o optimize the whole attribute and all single attribute for the
ource images. In contrast, classifier only needs to assume that
t is inseparable for generated images (the value is 0 or false),
o the remaining single attributes are considered needlessly. The
etailed operation is shown in Fig. 2 (bottom row). Meanwhile,
n order to maintain the stability of the model, ClsGAN adds a
enalty function for classification loss. The concrete operation is
mplemented by the loss function. The loss functions of attribute
dversarial net (about generator and classifier) are as follows:

lossc = Exr∼Pdata {t
T
r log(C(xr ))} + Exf ∼Pg {(1 − t (1)f ) log(1 − C(xf )(1))} (4)

LC d = −lossc + λEx∗ [(∥∇x∗C(x∗)∥2 − 1)2] (5)

LC g = Exr∼Pdata,G(xr ,lf )∼Pg {t
T
f log(C(G(xr , lf )))} (6)

here λ is the scale of gradient penalty and sets to 30. LC d
nd LC g denote the loss functions when training classifier(C) and
enerator about attributes. (xr , tr ) and (xf , tf ) correspond to the
mage and label of source domain Pdata and generation domain
g respectively, where tr/tf ∈ Rn+1. Specially, the first element
f tr/tf is used to evaluate whether the whole attribute is dis-
inguishable or not, define t (1)r = 1, t (1)f = 0, and the remaining
-dimensions vector represents image’s attributes label (source
ttribute label lr or target attribute label lf ). C(xf )(1) denotes the
irst element in vector C(xf ), T stands for transpose operation. Ex∗
enotes gradient penalty term about x∗ which is obtained by line

ampling between the original and the generated images.
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Fig. 2. The structure of ClsGAN, which mainly includes the framework of generator and discriminator. The generator is composed of two encoders and a Tr-resnet(T),
hich consist of a series of convolution layer and upper convolution residual block (upper right) respectively. Discriminator is composed of classifier C (which is
he attribute discriminator of Atta-cls) and adversarial discriminator D, whose parameters are shared.
g

.4. Network structure

Fig. 2 shows the framework of ClsGAN, in which the generator
s comprised of encoders and Tr-resnet. The encoders consist of
wo convolutional neural networks Ec, Ea, whose targets are to
extract image contents and attributes information respectively.
Ec obtains 512 × 16 × 16 high-level semantic content features
about source image and Ea evaluates the attribute label as the
asis of label continuity operation.
The Tr-resnet concatenates the content feature from Ec and

ifference attribute label l∗ = lf −Ea(xr ) (it is resized to the same
resolution as the content feature) to construct a new feature map.
Then Tr-resnet takes the new feature map as input to generate re-
constructed images (lf = lr ) or images with specific attributes. For
the purpose of selective use of attribute information and original
image information, Tr-resnet incorporates residual structure into
upper convolutional layers and constructs the Tr-resnet block.
The Tr-resnet block structure is shown in Fig. 2 (top right).

The discriminator D consists of a series of convolution layers,
and it shares parameters with the classifier C (except for the last
layer). The source image and generated image are both used as
the input of discriminator and classifier. It is assumed that the
image attribute label is n dimension. And the output vector of
classifier is n+1 dimension. The first dimension is used to distin-
guish whether the attribute is separable or not and the remaining
n dimension vector corresponds to the n-dimensional attributes
of the images. By referring to the method of loss function in
target detection (Redmon et al., 2016), the output vector of the
generated image only takes the first dimension for loss function
operation, and the other dimensions are expressed as none during
training classifier stage. The detail is shown in Fig. 2 (bottom
row).
223
3.5. Loss function

Adversarial loss Similar to other models, the work uses GAN
to ensure the generated images fine result in quality. In order to
stabilize training, our adversarial loss adopts WGAN-GP (Gulra-
jani et al., 2017).

LD = −(Exr∼PdataD(xr ) − Exf ∼PgD(xf )) + λEx′ [(∥∇x′D(x′)∥2 − 1)2]

(7)

LG = −Exr∼Pdata,G(xr ,lf )∼PgD(G(xr , lf )) (8)

where x′ is obtained by the linear sampling between the original
image and the generated image and λ is the scale of gradient
penalty and sets to 10. LD and LG respectively represent the
eneral adversarial loss about discriminator(D) and generator(G).

Generator(G) is composed of encoder Ec, Ea (representing content
encoder and attribute encoder respectively) and Tr-resnet (T ).
The relationship between G and Ec, T , Ea is as follows:

G(xr , lf ) = T (Ec(xr ), lf − Ea(xr )) (9)

Reconstitution loss StarGAN reconstructs the original images
by means of cycle consistency loss, which will increase the lack
of image generation during the cycle. In contrast, ClsGAN uses
the attribute difference label vector l = lr − Ea(xr ) and then
directly takes the label and content features into the Tr-resnet
to reconstruct the image. The reconstruction loss function is as
follows:

Lrec = ∥xr − T (Ec(xr ), l)∥1 (10)

where the L1 norm is used to suppress blurring of reconstruction
images and maintain clarity.
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Object model Considering formula (5), (7), the target loss
functions of joint training discriminator D and classifier C can be
expressed as:

min
CD

LCD = λ0LD + λ1LCd (11)

The objective function of the generator is comprised of adver-
sarial loss LG, attribute classification adversarial loss LCg , recon-
truction loss Lrec and attribute continuity loss La:

min
G

Lall = LG − λ2LCg + λ3Lrec + λ4La (12)

here LCd , LCg denote attribute classification adversarial losses
f classifier and generator, which are mentioned in Section 3.2.
0, λ1, λ2, λ3 and λ4 are model tradeoff parameters.

4. Experiments

Adam optimizer is adopted to train the model, and its’ param-
eters are set to β1 = 0.5, β2 = 0.999. The learning rate of the
irst 10 epoch is set as 2 × 10−4, and it is linearly attenuated to
0 at the next 10 epoch. In all experiments, the parameters are
λ0 = 4, λ1 = 3, λ2 = 1, λ3 = 20 and λ4 = 1. All experiments
are both performed in a Pytorch environment, with training on
a single NVIDIA TESLA V100. Source code can be found at https:
//github.com/summar6/ClsGAN.

4.1. Facial attribute transfer

Dataset This work adopts CelebA (Liu et al., 2015) dataset for
training and testing of facial attribute editing. The CelebA dataset
is a large face dataset, which contains more than 200,000 images
of celebrities’ faces and 40 facial attributes. In this paper, the
last 2000 images of the dataset are set as the test set, and the
remaining images are all used as the training set. The model first
performs center cropping the initial size 178 × 218 to 170 × 170,
then resizes them as 128 × 128 for training and test images.

13 of the 40 attributes are selected for attribute transfer in
the paper, which are ‘‘Bald’’, ‘‘Bangs’’, ‘‘Black Hair’’, ‘‘Blond Hair’’,
‘‘Brown Hair’’, ‘‘Bushy Eyebrows’’, ‘‘Eyeglasses’’, ‘‘Gender’’, ‘‘Mouth
Open’’, ‘‘Mustache’’, ‘‘No Beard’’, ‘‘Pale Skin’’ and ‘‘Age’’. These
attributes already cover the most prominent of all attributes.

Qualitative Assessment The work compares the proposed
lsGAN with StarGAN, AttGAN, STGAN in terms of performance
f facial attribute transfer. As can be seen in Fig. 3(a), while
tarGAN firstly achieves the multi-attribute editing using a single
odel, it is still limited in manipulating large range attribute. For
xample, there are obvious blurs and artifacts when editing Bald
nd Bangs attributes, which makes the images look unrealistic.
his may be because it is difficult to take full advantage of
he attribute information and other content information by only
onvolution-residual structure. AttGAN performs better on the
ttribute editing and the facticity, but the results contain some
ifferences in background compared with the original images
hile ClsGAN has a higher degree of restoration in the aspects
f background color and skin color (see Fig. 3(b)). In addition,
hen performing large range editing or additive attribute using
ttGAN, e.g., Bangs, Gender, Eyeglasses and Mustache, there are
ome blurs and artifacts (see Fig. 3). One possible reason is that
he model still lacks strong implementation capability about at-
ribute information only using the skip-connection technique of
ncoder–decoder and classification loss. Compared with StarGAN
nd AttGAN, ClsGAN accurately edits all of the attributes (global
nd local attributes), which credits to the applying of attribute ad-
ersarial classifier. It can be observed from Fig. 3, our results also
ook more normal and realistic, which benefits from Tr-resnet.

As can be seen in Fig. 4 (where Black-h, Blond-h and Brown-h

epresent Black-hair, Blond-hair and Brown-hair), both results of
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Table 1
Quality and reconstruction performance of the comparison methods on facial
attribute editing task.
Method StarGAN AttGAN STGAN ClsGAN

FID 7.9 7.1 6.1 6.09
SSIM 0.56 0.8 0.92 0.94

STGAN and ClsGAN can accurately edit the attribute and generate
more realistic images, however, the images using STGAN are still
likely to be insufficiently modified and show blurs (when editing
attribute Bald) while ClsGAN has a more excellent performance.
About reconstructive performance (Fig. 5), the images show more
consistency with original images regardless of the content, back-
ground and other aspects, compared with competitive models.

As for attribute continuity, the work not only tests the syn-
thetic images with binary attribute, i.e., with(1) or without(0),
but also assumes the attribute value is continuous and may be
bigger than 1. As can be seen in Fig. 6, the transfer images about
different values of a single attribute are all presented to analyze
the effects of attribute approximation method, which lists the
editing images of ClsGAN with attribute labels of 0, 0.2, 0.4,
0.6, 0.8, 1, 1.2, 1.4, 1.6 respectively. It can be observed that the
performance of the attribute gradually increases with the value
that is large, which indicates that attributes have continuity. The
transformation effects and image facticity are excellent from a
visual point of view.

Quantitative evaluation The performance of generated im-
ages mainly needs to focus on three aspects, i.e., image quality,
reconstruction accuracy and transfer accuracy. ClsGAN’s purpose
is to maintain the balance between quality and accuracy. The
images generated by the competitive methods recently are either
of low quality and high accuracy, or of low accuracy and high
quality. The images from the competitive methods are generated
using officially published code (StarGAN) or using a trained model
(AttGAN, STGAN). Comparing to StarGAN (FID 7.9), ClsGAN greatly
improves the image quality with the FID 6.09 while maintaining
relatively high conversion efficiency (average 0.66). The method
enhances the attribute accuracy comparing with AttGAN (average
0.637) and STGAN (average 0.59) and the image quality is better
than STGAN (FID 6.1). Meanwhile, our model effectively yields
transfer images to some special attributes, which is not easy to
convert in other methods, such as Mustache (0.523), the result
benefits from the Atta-cls.

ClsGAN utilizes two metrics, FID and SSIM, to evaluate the
image quality and the similarity between reconstructed and orig-
inal images, respectively. The FIDs of ClsGAN and the competitive
methods are all shown in Table 1, where the test dataset of
ClsGAN is adapted as the input to randomly edit 10,000 images
for evaluating image quality. Our method is superior to StarGAN,
AttGAN and STGAN in image quality with the FID 6.09, in which
the result benefits from the application of Tr-resnet. Furthermore,
the reconstruction rate outperforms other methods, which im-
proves by 2 percentage points to 94% comparing with STGAN. It
is also seen in Fig. 5 that the reconstructed images yielded by our
method are more consistent with source images in each aspect
(background, details, etc.) than other models.

As for the classification accuracy, the training set of CelebA
dataset is adopted to train a classifier for 13 attributes and attain
the average accuracy of 93.83% in the test set. Then the pre-
trained classifier is used to test the transfer accuracy of different
models between 2000 synthetic images. In order to compare the
editing ability of each model, the conversion rate of 13 attributes
is listed in the form of a bar chart. As can be seen in Fig. 7, the
performance of StarGAN is outstanding in hair color transfer. A

https://github.com/summar6/ClsGAN
https://github.com/summar6/ClsGAN
https://github.com/summar6/ClsGAN
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Fig. 3. Face transfer images on CelebA dataset between StarGAN, AttGAN and ClsGAN. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. Face transfer images on CelebA dataset between STGAN and ClsGAN. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

225



Y. Liu, H. Fan, F. Ni et al. Neural Networks 133 (2021) 220–228

r
h
B

Fig. 5. Face reconstructive images on CelebA dataset between different models.

possible reason is that the hair color is more prone to be affected
by source attribute information owing to ease of color conversion,
while the StarGAN avoids the additional introduction of source
attribute information by using no skip-connection layers. Com-
paring with STGAN, ClsGAN attains significant gain in attribute
Bangs (0.689), Black_hair (0.8325) and Mustache (0.523), which
profits from the Atta-cls method. The transfer accuracy of other
attributes is also relatively remarkable comparing with AttGAN
and STGAN and has average transfer 0.66. Although the accuracy
is slightly lower than StarGAN (average 0.74), image quality (FID
6.09) is much better than StarGAN (FID 0.79). It implicates that
our attribute adversarial classifier which implements attribute
generation in an adversarial way is effective in enhancing the
transfer accuracy. The accuracy of attribute Pale is relatively poor
in numerical terms, which is likely that the pre-trained classi-
fier cannot recognize the image with a lighter conversion effect.
However, it is acceptable to the editing effect visually (see Fig. 4).

4.2. Seasons and artistic styles transfer

Since the objective of style transfer is the same with attribute
editing to some extent, ClsGAN is also implemented to realize
the style transformation task. The method is employed on a
season dataset and a painting dataset. Seasonal images are from
the Unplash website, where the numbers of images of differ-
ent seasons are: spring (29 343), summer (23 395), fall (7630)
and winter (13 433). The painting images mainly come from the
wikiart website, and ClsGAN achieves the mutual transformation
between four styles and photographs. The number of images
is Monet: 1050, Cezanne: 582, VanGogh: 1931, Ukiyo-e: 1372,
Photograph: 4674. The photographs are downloaded from Flickr
and use landscape labels, and are all resized as 256 × 256.
226
Fig. 7. The attribute accuracy about StarGAN, AttGAN, STGAN and ClsGAN. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

It can be seen from Fig. 8 that the result about the artistic
and seasonal transfer is acceptable, but there are some artifacts in
some synthetic images (the second image in the first row of (a),
the last column of (b)). One possible reason is that it is limited
when editing the large range texture and color using a single
model. On the other hand, the attribute editing model may not
be able to balance the effect between image quality and attribute
transformation, because it needs to pay more attention to a lot of
texture information. However, ClsGAN is a potential model which
still deserves to be further explored and promoted.

4.3. Ablation study

In this part, the roles of Tr-resnet and attribute adversarial
classifier (Atta-cls) are investigated. Concretely, four different
combinations are considered: (i) ClsGAN: the original model; (ii)
ClsGAN-conv: substituting Tr-resnet with the convolution net-
work in the decoder; (iii) ClsGAN-conv-res: adopting the residual
technique to learn the convolution in ClsGAN-conv; (iv) ClsGAN-
oricla: adopting the original classifier which is used in StarGAN,
AttGAN and STGAN instead of the adversarial classifier. Fig. 9
shows the results of different variants.

Tr-resnet vs its variants In Fig. 9 (row(1), row(2), row(3)), the
esults about Tr-resnet and its variants are shown (where Black-
, Blond-h and Brown-h represent Black-hair, Blond-hair and
rown-hair). It can be seen that the images outperform the other
Fig. 6. Interpolation results for facial attributes on CelebA dataset by employing our model. Values among 0–1.6 are the label values about the attribute.
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Fig. 8. The 256 × 256 transfer images about season dataset and painting dataset. Please zoom in for better observation. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Face transfer results on four different combinations. Please zoom in for better observation. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
combinations using Tr-resnet. Compared with ClsGAN, the results
of ClsGAN-conv are undesirable in some attributes, e.g., Eye-
glasses, Old. The situation implies that it is insufficient to attain
the necessary information from attributes label only using convo-
lution operation. The images generated by ClsGAN-conv-res are
relatively acceptable but the global editing contains the unneces-
sary changes (such as Male editing alters the hairstyle in the third
row). As can be seen, the transfer images of ClsGAN are more
accurate in all attributes and the quality has better performance.

Atta-cls vs original classifier Compared with Atta-cls, the
esults (see row(4)) of using the original classifier look more
nrealistic accompanied with artifacts and blurriness. One avail-
ble reason is that only using the original classifier is likely to
ffect the gain of the necessary information from original images
nd attributes label, so as lower performance of photo-realistic
nd attribute accuracy. In this paper, the adversarial technique
s employed to motivate the classifier to learn detailed attribute
nformation, thus it improves the quality of images by optimizing
he generator. From row(1) of Fig. 9, it can be seen that the results
f ClsGAN look more photo-realistic and natural compared with
he original classifier method.

. Conclusion

In this paper, the work first analyzes the constraint problem
etween image attribute transfer and quality about attribute edit-
ng and proposes the ClsGAN model by incorporating the upper
onvolution residual network (Tr-resnet) and attribute adversar-
al classifier (Atta-cls). About Tr-resnet, the upper convolution
227
structure is applied with residual technique to select the desired
information and avoid interference with resource attribute in-
formation. What is more, Atta-cls is presented to enhance the
attribute transfer accuracy of the image, which is inspired by
the spirit of generated adversarial network. The attribute adver-
sarial classifier can selectively find necessary information about
attributes and then optimize the generator in an adversarial way.
At the same time, an approximation between the source label and
attribute feature vector (which is generated by style encoder) is
made to meet the requirement of label continuity. Experiments
and ablation studies both demonstrate the great effectiveness of
ClsGAN in attribute editing.
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